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The mechanics of the #uid}structure interaction between a thin #exible web, wrapped around
a cylindrical drum (reverser), and the air cushion formed by external pressurization through the
holes of this drum is analyzed. Derivation of a &&new'' theory for the moderately large de#ections
of a thin cylindrical shell to model the web is presented. This theory allows for large web
de#ections, while using a self-adjusting strain-free reference state for the web in order to keep
the circumferential web tension around a constant level. The theory also incorporates the
redistribution of the in-plane stress resultants in the axial and shear directions using the Airy
stress function. The air-#ow is averaged over the height direction of the web-reverser clearance.
The surface area of the pressure holes is averaged locally over the total reverser surface. The
resulting equations are a modi"ed form of the Navier}Stokes and mass balance equations with
nonlinear source terms. The coupled #uid}structure system is solved numerically. The mechan-
ics of the interaction between the web de#ections and the air cushion generated by the reverser
is explained. The e!ects of the problem parameters on the overall equilibrium are presented.
Parameter distributions which cause the web to contact the reverser are identi"ed, and
suggestions are made to avoid this state. ( 1999 Academic Press
1. INTRODUCTION

1.1. DESCRIPTION OF THE PROBLEM

AN AIR-REVERSER IS A HOLLOW, cylindrical, porous drum used in web-handling appli-
cations where it is important to change the direction of a web without contact. An
air cushion is formed in the web-reverser clearance by injecting pressurized air through
the holes of the reverser. The web #oats over this air cushion and the direction of
the moving web is thus changed without contacting the underlying drum. A schematic
depiction of a web #oating over a reverser is given in Figure 1. The magnitude of the
overall #oating pressure p

!7%
depends primarily on the pull-down pressure ¹/R due

to wrapping the web under tension ¹ over a drum with radius R. A typical web path is
equipped with an active tension control mechanism that keeps the web tension constant.
Therefore, relatively large web de#ections can be implemented without inducing large
strains.
89}9746/99/060681#28 $30.00 ( 1999 Academic Press



Figure 1. Schematic view of a web moving over an air reverser under tension ¹ and with speed <.

682 S. MUG FTUG AND K. A. COLE
The steady-state air pressure in the interface is inversely related to the web- reverser
clearance h (MuK ftuK et al. 1998a). Therefore, while the air injected into the clearance causes
the web to de#ect away from its initial state, increasing clearance causes reduction in the air
pressure. Thus the #uid mechanics of air is coupled to the de#ection of the web and vice
versa. The coupled system eventually settles to a steady-state clearance.

1.2. THE FLUID MECHANICS OF AN AIR REVERSER

Typical web-reverser clearance (3}4 mm) is considerably smaller than the typical width
(1 m) and length (1 m) of the web supported by the reverser. The air-#ow in this narrow
clearance is primarily dominated by inertial #ow (MuK ftuK et al. 1998a). The viscous #ow
contribution constitutes a relatively small (10}20%) fraction of the average air pressure in
the clearance (MuK ftuK et al. 1998b). The velocity of the moving web is typically 2}5 m/s,
whereas the velocity of air in the web-reverser clearance is typically 20 m/s. The e!ect of the
web velocity on the air pressure is therefore neglected in this work. The stronger inertial
#ow e!ect can be seen when the ratio of inertial to viscous forces in the #uid, given by the
modi"ed Reynolds number Re*"o<h2/k¸, is calculated. For the typical clearance height
h"4 mm, wrap-length ¸"1 m, #ow speed <"20 m/s, air density o"1)2 kg/m3 and air
viscosity k"1)85]10~5 Pa s, the modi"ed Reynolds number is 21. The two-dimensional
air-reverser #ow model presented by MuK ftuK et al. (1998a, b) use the #uid velocities u* and v*,
in the plane of the web, and the air pressure p averaged over the web-reverser clearance. The
#uid velocity w* in the clearance-height direction is neglected. The governing equations of
the #ow are a modi"ed form of the incompressible Navier-Stokes and mass balance
equations with nonlinear source terms.

A problem similar to the #uid}structure interaction of a web and a reverser is encoun-
tered in externally pressurized foil bearings (Gross 1980). However, a close look at typical
parameters of a foil-bearing application: tape-guide clearance h"2 lm, wrap-length
¸"5 mm and tape speed 2 m/s, shows that the modi"ed Reynolds number is 10~4. This
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indicates that viscous forces strongly dominate the #ow. Moreover, the air-entrainment
e!ects on the downstream side of the groove region also play a dominant role in the
pressure developed in the interface (Wildmann 1969; Eshel 1979). The #uid mechanical
e!ects in the foil bearing problem seem to be substantially di!erent from that in the
air-reverser problem.

The interaction of a single Coanda jet with a #exible #at web has been studied by
Quadracci & Modi (1994), where the web is assumed to be in"nitely wide. The main #uid
mechanical e!ect in this case is the creation of a reliable source of air-suction to stabilize the
web. An experimental study on this subject has been reported by Pimenov & Galimov
(1994).

1.3. MECHANICS OF A THIN FLEXIBLE WEB WRAPPED AROUND A CYLINDER

In this paper, web de#ections are modeled by a moderately large de#ection &&cylindrical''
shell theory with a continuous curvature variation and a self-adjusting reference state, near
the steady state of the web. This new approach creates an e$cient method in representing
the de#ection history of the web, arising from its initial wrapping around the drum and its
subsequent motions to keep a nearly constant tension level.

The shell theory used here is based on an extension of Donnell's (1976) theory on
cylindrical shells. Donnell's work is an extension of von Karman's plate theory, which has
been used by Lin & Mote (1995, 1996) to study the buckling of a #at web in the free span
between two rollers. The subject of wrapping a thin web around a cylindrical drum, over
large wrap-angles was treated by Rongen (1990, 1994) who used Donnell's theory. Sun-
daram & Benson (1989) and MuK ftuK & Benson (1995) used the small-de#ection cylindrical
shell theory to study the dynamic e!ects in this problem. Ono & Ebihara (1984) also used
the cylindrical shell equations in obtaining steady-state solutions related to tape mechanics.
In these works, neither the web curvature containing a discontinuity at the tangency point,
which can only be correct for vanishingly thin membranes, nor the &&straight'' region of the
web are considered. In the present work, a continuous function for the curvature variation
of a relatively thick web, wrapped around a cylindrical drum, is introduced. The continuous
web curvature, as it will be de"ned here, has also been treated recently by Benson (1998).

A self-adjusting reference state in connection with the analysis of #exible tapes was "rst
described by Barlow (1967). The in-plane stresses were referred to a self-adjusting cylindrical
surface as described here, but the bending moments were described with respect to the
unde#ected con"guration w

0
, in contrast to the present work. The equations were, then,

reduced to an in"nitely wide web where the e!ects vanish. Benson & D'Errico (1991) and
Benson (1993) used an adjustable reference radius in their work, where they considered the
radial de#ections of a cylindrical shell wrapped around a bumpy drum. They considered
only the circumferentially symmetrical case. In their model an initially unknown reference
radius is de"ned where the in-plane stresses vanish. A constraint equation, based on
averaging the radial de#ections and on keeping the circumferential in-plane stress resultant
at the level of the externally applied tension, is used to "nd this reference radius.

Description of the present shell model

Consider an initially #at web ¸
x
long and ¸

y
wide, simply supported at its longitudinal ends

and free on its lateral edges. This web is "rst wrapped around a cylindrical drum, and then it
is further de#ected by air pressure. During this process, the longitudinal tension in the web



Figure 2. Schematic depiction of the strain-free reference w
r
and the total de#ection w for a web wrapped around

a cylinder of radius R
c
.
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remains constant, while the length of the web between its supports changes. This is a fairly
complicated de#ection history which can be analyzed by nonlinear continuum mechanics
[e.g., Bathe (1996)].

A di!erent approach is taken in this paper, where partial di!erential equations of
moderately large-de#ection shell theory are derived, based on the "nal de#ected state of the
web. The de#ection history of the web is directly included in these equations, based on the
knowledge of the various states of this de#ection. Therefore, this approach can best be
described by referring to these di!erent states. There are two key con"gurations used in this
model: the initial, w

0
, and the self-adjusting, w

r
, reference states. The actual, "nal con"gura-

tion of the web is indicated by w. These states are schematically depicted in Figure 2.
When a quiescent web is wrapped around a cylindrical drum, it comes in contact with the

drum in the wrap-region and its curvature o! the drum asymptotically approaches zero.
This is called the initial reference state, w

0
. The de#ection history of bending the web around

the drum is included in this state.
When the web "nds its actual, steady-state con"guration w due to #uid}structure

coupling, its length will increase with respect to w
0
, but its tension will remain the same.

Thus, despite the large de#ections that the web undergoes, it is strained only moderately.
Therefore, the strain-free state of the web can no longer be the initial reference state. It
would be reasonable to assume, since the web tension remains constant, that the strain-free
state of the web moves with the web. Thus the self-adjusting reference state, w

r
, from which

the web strains are measured, is described by a &&cylindrical'' surface extending from the
mid-line of the de#ected web in the lateral direction. In mathematical notation the self-
adjusting reference state is indicated by

w
r
(x)"w (x, 1

2
¸
y
). (1)

The self-adjusting reference state varies only along the running direction x. This is neces-
sary, in order to be able to use the cylindrical shell theory to represent the web de#ections.
The variability of the web curvature in the x-direction does not represent a problem, as long
as the local web curvature does not deviate too much from the state de"ned by w

0
(Donnell
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1976; p. 360). The self-adjusting reference state w
r
is initially unknown and its shape strongly

depends on the air pressure acting on the web.
The web de#ection which causes the local straining occurs with respect to the self-

adjusting reference state w
r
. This de#ection is de"ned as

wN "w!w
r
. (2)

The moderately large-de#ection shell theory used in this work allows the de#ection wN of
a typical web to be in the order of the web thickness, i.e., 0)1}0)2 mm (Donnell 1976; p. 360).

Bending the web around a cylindrical drum causes anticlastic curvature l/R(x) to develop
in the transverse direction of the web, where l is the Poisson ratio (Timoshenko & Woin-
kowsky-Krieger 1987). Fung & Wittrick (1955) indicate that the web cross- section remains
mostly #at in the transverse direction if the ratio (¸

y
/2)2/(Rc) is large. An exception to this

occurs in the de#ection boundary layers around the lateral edges, where the maximum web
de#ection is still less than the web thickness. For a typical web thickness c"0)2 mm,
drum-radius of 0)25 m and web width of 1 m this ratio is approximately 5000; thus the e!ect
of the anticlastic curvature is neglected in this work.

2. WEB DEFLECTION EQUATIONS

The derivation of the equations governing the web de#ections given in the following are
based on the theory of cylindrical shells by Donnell (1976). In the present work, the in-plane
strains and the curvatures of the web are measured from an initially unknown, self-adjusting
reference state, w

r
; The radius of curvature of the web R(x) is a continuous function of the

circumferential direction x. In this work, the coordinate axes are oriented in such a way that
the positive pressure p and radial de#ection w are oriented along an outward normal to the
shell surface. The circumferential direction is denoted by x and the transverse direction by y.

The classical shell theory is based on the Kircho!}Love assumptions which state that: (i)
the thickness of the shell is small compared to the other dimensions of the shell; (ii) normals
to the unde#ected middle surface of the shell remain straight and normal to the de#ected
middle surface; (iii) the transverse normal stress p

z
can be neglected compared to other

stresses; (iv) the de#ections of the shell wN are small compared to the thickness of the shell,
c (Donnell 1976). This last assumption leads to the small-de#ection shell theory where the
de#ection is mainly dominated by bending of the shell and the middle-surface stretching is
only due to external tension applied at the edges.

For larger web de#ections that are in the order of the web thickness, bending of the shell
contributes signi"cantly to its in-plane stretching. In this case, the in-plane and bending
equilibria of the shell are coupled, and the membrane strains become nonlinear (Donnell
1976):
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where u and v are the in-plane web de#ections in the x- and y-direction, respectively. The
nonlinear terms such as (RwN /Rx)2 represent the contribution of bending to the in-plane
stretching of the web. The curvature of the shell after de#ection is also measured with
respect to the self-adjusting reference state and it is given by

i
x
"

R2wN
Rx2

, i
y
"
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xy
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R2wN
RxRy . (4)



Figure 3. Stresses acting on a small rectangular piece of the web.

686 S. MUG FTUG AND K. A. COLE
The equilibrium of the shell is expressed in terms of the stress resultants acting on the
middle surface of the shell. These resultants are obtained by integrating the stresses through
the thickness of the web, as depicted in Figure 3. Thus, the in-plane normal stress resultants
N

x
, N

y
and the in-plane shear stress resultants N

xy
are de"ned as

N
x
"P

c@2

~c@2

p
x
dz, N

y
"P

c@2

~c@2

p
y
dz, N

xy
"P

c@2

~c@2

q
xy

dz, (5)

where z is the coordinate axis perpendicular to the middle surface of the shell, q
xy

is the shear
stress acting in the plane of the web, and p

x
and p

y
are the normal stresses acting in the

circumferential and axial directions, respectively. The normal shear stress resultants Q
x
and

Q
y
are de"ned as

Q
x
"P

c@2

~c@2

q
xz

dz, Q
y
"P

c@2

~c@2

q
yz

dz, (6)

where q
xz

and q
yz

are the shear stresses acting perpendicular to the plane of the web. The
resultant moments M

x
, M

y
, and M

xy
are de"ned as

M
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"P
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p
x
z dz, M

y
"P
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p
y
z dz, M

xy
"P

c@2

~c@2

q
xy

z dz. (7)

Note that in shell theory it is generally assumed that N
xy
"N

yx
and M

xy
"M

yx
(Donnell 1976).

The equations governing the web de#ections can be obtained by considering the equilib-
rium of the stress resultants acting on a small element of web, as shown in Figure 4 (Donnell
1976; Timoshenko & Woinkowsky-Krieger 1987). The in-plane components of the tractions
acting on the web are indicated by f

x
and f

y
, and the normal component is indicated by p. In

order to take the projections of the stress resultants on the coordinate axes x, y and z, an
expression for the angle that the deformed surface makes with respect to the unde#ected
surface is needed. For moderately large de#ections of the shell, this angle can be approxi-
mated by the slope of the de#ected surface. For example, the slope of point A in Figure 4 is
approximated by tan h

A
Kh

A
KRw/Rx and the slope of point B by tan h

B
Kh

B
KRw/Rx

#R2w/Rx2. Then, by taking the aforementioned projections, the following equilibrium
equations are obtained:

RN
x
Rx #

RN
yx
Ry "0, (8a)

RN
y
Ry #

RN
xy
Rx "0, (8b)



Figure 4. The stress and bending moment resultants acting on a piece of the web to keep the web in static
equilibrium. Note that in this "gure the bar over a variable indicates that it is incremented in the x-direction; such

as NM
x
"N

x
#(LN/Lx) dx.
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where equations (8a) and (8b) are the in-plane equilibrium equations in x- and y-direction,
respectively, and equation (8c) is the equilibrium equation in the z-direction.

The shell theory allows some simpli"cation of the stress resultants in the derivation of
equations (8a}c) (Donnell 1976, p. 173; Timoshenko & Woinkowsky-Krieger 1987, p. 379).
First, the e!ect of the shear force resultants Q

x
and Q

y
, which are normal to the web surface,

are neglected from the in-plane equilibrium equations (8a, b). As the local rotations of
the web are small, the projection of Q

x
and Q

y
, on the in-plane directions would be negligible

compared to the projections of N
x
, N

y
and N

xy
. If included, these terms are

#Q
x
(R2w/Rx2!1/R (x))#RQ

x
/Rx Rw/Rx for equation (8a) and #Q

y
(L2w/Ry2)#RQ

y
/Ry

Lw/Ry for equation (8b) on the left-hand side of these equations. Second, in deriving
equation (8c) the variations of the in-plane stress resultants, such as RN

xy
/Rx, are neglected,

as this variation is assumed to be small, compared to the stress resultant N
xy

. Finally, the
e!ect of the shear component of the external tractions f

x
and f

y
on the in-plane equilibrium

equations are neglected, as this work does not consider the shear coupling between air and
the web.
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By considering the equilibrium of moments acting around the x- and y-axis, as shown in
Figure 4(b), the moment equilibrium equations are obtained as

RM
y

Ry #

RM
xy
Rx !Q

y
"0, (9a)

!

RM
x

Rx #

RM
yx
Ry #Q

x
"0. (9b)

The equation of equilibrium in the radial direction, equation (8c), can be further simpli"ed
by: (a) eliminating the last two terms of equation (8c) by using equations (8a, b) and (b)
eliminating the normal shear force components Q

x
and Q

y
by using the moment equilibrium

given by equations (9a, b). Then the following equation is obtained:
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As the shear coupling between air and the web is neglected, at steady state, the in-plane
stress resultant distribution N

x
equals the externally applied tension ¹. However, local

stress variations will exist in the web due to local di!erences in web de#ection. If these local
stress variations are indicated by N@

x
, N@

y
and N@

xy
, then the stress resultants at steady state

become

N
x
"¹#N@

x
, N

y
"N@

y
, N

xy
"N@

xy
. (11)

Hooke's law establishes the stress}strain, and the moment}curvature relations as follows:
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where

C"

Ec

1!l2
, C@"

Ec

2(1#l)
, D"

Ec3

12(1!l2)
, D@"D(1!l). (13)

The stress resultant in the circumferential direction N
x
from equation (11) can be expressed

by using the Hooke's law and the de"nition of the strains as

N
x
"¹#CC

Ru
Rx#

wN
R (x)

#

1
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RwN
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2
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1
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2

BD. (14)

By using this expression in equation (10) and by using Hooke's law, the equation governing
the radial web de#ections is obtained as

D+4wN #D
s
wN !¹

R2w
Rx2

!N@
y

R2w
Ry2 !2N@

xy

R2w
RxRy"p!

¹

R(x)
, (15)

where D
s
"Ec/(R2(x) (1!l2)) is the shell-sti!ness. This is the equation governing the radial

de#ections of the web. Note that this equation is nonlinear due to the presence of wN . The
linear version of this equation (i.e., when wN Pw) has been used for modeling small
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de#ections of magnetic tapes by Ono & Ebihara (1984), Sundaram & Benson (1989) and
MuK ftuK & Benson (1995). In order to reduce the number of nonlinear terms in equation (15),
the terms involving wN (R2w/Rx2), (RwN /Rx)2 and (RwN /Ry)2 have been omitted. While these terms
are important in retaining the ability to model large de#ections, based on the success of the
linear models mentioned above, this omission should not a!ect the results as long as the
de#ections wN are in the order of web thickness. These nonlinear terms should be included in
future work.

In equation (15), the in-plane stress resultants N@
y

and N@
xy

are unknown. They can be
determined by a simultaneous solution of the in-plane equilibrium equations (8a,b) with
equation (15). Alternatively, a single equation representing the in-plane stress resultants can
be obtained by the method described by Donnell (1976, p. 361). This approach is adopted
here. The in-plane equilibrium equations (8a, b) are identically satis"ed by using the
following de"nitions given in terms of the Airy-stress function / (x, y):

N@
x
"

R2/
Ry2

, N@
y
"

R2/
Rx2

, N@
xy
"!

R2/
RxRy . (16)

The strain compatibility equation

R2e
x

Ry2
#

R2e
y

Rx2
!

R2e
xy

RxRy"0 (17)

ensures the uniqueness of the strain distribution. By using the membrane strains given by
equation (3) in the strain compatibility equation the following equation is obtained:

+4/"EcCA
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RxRyB

2
!
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Rx2
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Ry2

#

1

R(x)

R2wN
Ry2 D. (18)

Equations (15), (16) and (18) describe the equilibrium of a web wrapped around a cylindrical
drum.

2.1. THE BOUNDARY CONDITIONS

On the simple supports, the de#ection wN and the bending moment M@
x
of the web are zero.

On the free edges, the bending moments M@
y
and the equivalent normal shear force resultant

Q%2
y
"Q

y
#RM@

xy
/Rx vanish (Timoshenko & Woinkosky-Krieger 1987). These boundary

conditions are expressed as
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x
"D C
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Rx2

#l
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wN "0, (19b)

at x"0, ¸
x
, and 04y4¸

y
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y
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x
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The boundary condition for the Airy stress function is /"0 around the periphery of the
web.

2.2. THE CURVATURE OF THE WEB

Let R
o
(x) denote the radius of curvature of a web at the initial reference state when it is

wrapped around a cylindrical drum. If this web has no bending sti!ness (D"0), then its
radius of curvature will have a discontinuity at its tangency points ¸

1
and ¸

2
. This type of

curvature is expressed as

R
o
(x)"R

c
[H (x!¸

1
)!H (x!¸

2
)] for 04x4¸

x
, and

(21)
0(¸

1
(¸

2
(¸

x
,

where H is the Heaviside step function. On the other hand, a web with "nite bending
sti!ness (DO0) wrapped around the same drum will not be able bend down to these
tangency points. In fact, the new tangency points will be o!set from ¸

1
and ¸

2
by a peel-o+

angle h*, as depicted schematically in Figure 5(a). In the wrap-region, the bending moment
M in the web is simply given as

M"

D

R
c

(22)

by Timoshenko & Woinkowsky-Krieger (1987). Su$ciently far away from the cylinder, in
the -at-region, 1/R

o
(x)P0. Between these two ends a transition region exists, where R

o
(x)

changes from R
c
to R in a continuous manner.

The initial reference state of the web is de"ned by the radius of curvature R
o
(x), the

locations of the tangency points ¸
1
, ¸

2
and the peel of angle h*. When the web de#ects away

from the initial reference state, its initial radius R
o
(x) and its "nal radius R (x) are separated

along the direction normal to the web, by w
r
. This separation is small relative to the

magnitude of R
o
(x), and it is neglected in this paper. Therefore, in the governing equations

(15) and (18), R(x)"R
o
(x) is used.

In the following two sections, the Euler}Bernoulli beam theory and the elastica theory
are used to obtain an expression for R

o
(x). The results of these two approaches are

compared at the end of the section. It will be seen that the beam formulation leads to an
analytical expression, while the elastica formulation requires a numerical solution. For ease
of implementation, the beam formulation has been used in the governing equations.

2.2.1. ¹he web curvature using the beam equation

In this section the equations describing the shape of the web in the transition and the
#at-regions are derived by using the beam theory. For the derivation, consider only
the length of the web (¸

2
!R

c
h*)4x4¸

x
. Assuming that this region of the web can be

modeled as a beam, its de#ection can be found by solving

d4w

ds4
!j2

d2w

ds2
"0, (23)

where s is the coordinate axis of this beam oriented along the asymptote of the web, as
shown in Figure 5(a), and j"(¹/D)1@2. A bending moment M* acts on this beam at
s"!s*, to satisfy the continuity of the beam with the web, and causes the beam to be
de#ected by an amount w*. By using equation (22) we see that M"M*. Thus, the following



Figure 5. The schematic depiction of the peel-o+ e!ect due to web bending. (a) The coordinate system for the
beam solution. (b) The coordinate system for the elastica solution.
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boundary conditions describe the problem:

at s"!s*: w"w*,
d2w

ds2
"

1

R
c

, (24a,b)

at sPR: w"0,
dw

ds
"0. (24c,d)

The solution of equation (23) with these boundary conditions gives

w"

exp[!j(s*#s)]!1

R
c
j2

#w*. (25)

Note that the de#ection w* and the peel-o! angle h* are not yet known. It can be shown
that the slope of the beam at s"!s* is equal to the peel-o! angle, i.e.,

h*"
dw

ds K
s/~s*

"

1

R
c
j

. (26)

An approximate equation for the variation of curvature along the web can then be found by
assuming tan h*Kh* which leads to the relation Ds*DKRh*. The curvature variation thus
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becomes

1

R(s)
"

d2w

ds2
"

1

R
c

exp[!(1#js)]. (27)

With this solution the curvature relation for the web wrapped around a cylindrical drum
becomes

1

R
o
(x)

"

1

R
c G

exp[!(1#j (¸
1
!x))], 04x4¸

1
#

1

j
,

1, ¸
1
#

1

j
4x4¸

2
!

1

j
,

exp[!(1#j (x!¸
2
))], ¸

2
!

1

j
4x4¸

x
.

(28)

2.2.2. ¹he web curvature using the equation of an elastica

A more precise formulation of the web curvature variation can be obtained by using the
inextensional elastica formulation (Frisch-Fay 1962; Benson 1998). The equation of mo-
ment equilibrium in this approach is given by

d

dsAD
dt
dsB"!¹ sin(h*!t), (29)

where s is the coordinate axis along the web whose origin is at the tangency point as shown
in Figure 5(b), t is the angle between the tangent of the web at s and the xN axis and h* is the
orientation of the asymptote of the web. As stated before, h* is equal to the peel-o! angle.
Note that de"nitions of the coordinates s are di!erent in Figures 5(a) and 5(b). The following
relation exists between s and t:

s"P
s

0

dsN"
1

J2j P
t

0

dtM
[1!cos(h*!tM )]1@2

for t3[0, h*]. (30)

The boundary conditions to solve equation (29), for the geometry shown in Figure 5(b), are

at t"0:
dt
ds

"

1

R
c

, at t"h*:
dt
ds

"0. (31a, b)

Initially, the orientation of the asymptote h* is unknown, nevertheless equation (29) can be
integrated to give

A
dt
dsB

2
"!2j2 cos(h*!t)#A. (32)

The unknowns h* and A are found from the boundary conditions. In particular, the peel-o!
angle becomes

h*"arc cosC1!
1

2(R
c
j)2D . (33)

Then the curvature of the web is obtained as

1

R(s)
"

dt
ds

"j[2(1!cos(h*!t))]1@2. (34)



Figure 6. Comparison of the normalized web-curvature R
c
i (s) in the bending region for the beam and elastica

models along the normalized beam length js.
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Here this equation is integrated numerically. However, it can also be put into the form of an
elliptic integral, and be evaluated from standard tables (Frisch}Fay 1962).

2.2.3. Summary and comments on the web curvature

The curvature relationships given by equations (27) and (34) are compared in Figure 6. This
"gure shows that the beam-solution underestimates the curvature variation. Therefore, the
pull-down pressure ¹/R, in the transition region, will be lower with the beam approach. Let
the transition region be de"ned as the region where the web-curvature reduces from 1/R

c
to

0)01/R
c
. Then the transition-region length for the beam equation becomes

e
t
"!

1#ln(100)

j
#R

c
h*"

ln(100)

j
(35)

For the elastica equation this expression is

e
t
"

1

J2j P
te

0

dt
[1!cos(h*!t)]1@2

,

where

te"arc cosC1!
1

2(R
c
j)2D!arc cosC1!

10~4

2(R
c
j)2D. (36)

Figure 6 shows that the transition length is approximately 4)6/j for the beam solution and
10/j for the elastica solution. The peel-o! angle h* and the transition length are calculated
for a few applications of interest (Table 1) and they are presented in Table 2. Here, it can be
seen that the beam solution gives good results for the peel-o! angle but underestimates e

t
by

more than one-half.



TABLE 1

Physical parameters for some webs of practical interest

Material c (lm) ¹ (N/m) E (GPa) R (m)

Magnetic tape 15 100 4 0)003
PET-"lm 150 200 4 0)15
Paper 158 70 6.9 0)15

TABLE 2

The peel-o! angle and transition-region length for webs given in Table 1

Beam equation The elastica

Material j~1 (mm) h* e
t
(mm) h* e

t
(mm)

Magnetic tape 0)111 2)12350 0)51 2)12360 1)66
PET-"lm 2)486 0)94970 11)44 0)94970 27)61
Paper 5)967 2)27920 27)47 2)27930 66)27

Figure 7. Schematic view of the initial guess for the web-reverser clearance, h(0) , and the reverser geometry, d, in
equation (37).
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2.3. THE WEB-REVERSER CLEARANCE

The clearance h between the web and the reverser, at a given location (x, y) on the web, is
measured along the normal to the surface of the reverser as shown in Figure 7. This is
represented mathematically as

h(x, y)"w (x, y)#d (x),

with

d(x)"G
d
L
(x) left flat-region,

0 wrap-region,
d
R
(x) right flat-region,

(37)
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where d
L
(x) and d

R
(x) represent the clearance between the initial reference state of web and

the reverser, on the #at region of the web. In the solution method described in Section 4, the
function d (x) remains constant throughout the solution process.

3. FLUID MECHANICS OF THE AIR-REVERSER

As indicated before the web-reverser clearance h is smaller than the other dimensions of the
problem. This allows the #ow velocity in the direction normal to the reverser surface w* to
be neglected, and the in-plane #ow velocities u* and v*, and the air pressure p to be averaged
in the normal direction. The hole distribution over the surface of the reverser is averaged
locally. For example, using the parameters given in Figure 8 the hole density becomes
a"nr2

h
/bd. The governing equations for the steady-state air-#ow in the web-reverser

clearance then become the modi"ed mass-continuity and Navier}Stokes equations given by
MuK ftuK et al. (1998b). These equations, expressed in a Cartesian coordinate frame (x*, y*)
located on the reverser surface as indicated in Figure 1, are

Rhu*

Rx*
#

Rhv*

Ry* "a;,

oAu*
Ru*
Rx*

#v*
Ru*
Ry*B"!

Rp
Rx*

#k A
4

3

R2u*
Rx*2

#

R2u*
Ry*2

#

1

3

R2v*
Rx*Ry*B!2

q
z*x*

h
!ao;

u*

h
,

(38)

o Au*
Rv*
Rx*

#v*
Rv*
Ry*B"!

Rp
Ry*#kA

R2v*
Rx*2

#

4

3

R2v*
Ry*2

#

1

3

R2u*
Rx*Ry*B!2

q
z*y*

h
!ao;

v*

h
,

where ; is the air velocity through the reverser holes as depicted in Figure 8. The
web-reverser clearance h is measured along a normal to the reverser surface. The #ow is
turbulent in the web-reverser clearance as shown by the high value of the Reynolds number
Re"o<h/k+5200. Thus, a reasonable estimate for the shear stresses q

z*x* and q
z*y*

, which
occur at the web and reverser surfaces, can be obtained from the 1

7
th-power-velocity
Figure 8. Details of the pressure holes on the surface of the air reverser.
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distribution law (Schlicting 1987) for the case of turbulent #ow in a two-dimensional
channel

q
z*x*"

1

2
o0)0676 cos hA

oh

k B
j{

(u*2#v*2)(2~j{)@2,

(39)

q
z*y*

"

1

2
o0)0676 sin hA

oh

k B
j{

(u*2#v*2)(2~j{)@2,

where h"tan~1(v*/u*) and j@"1
4

(MuK ftuK et al. 1998b). The air velocity through the holes
; depends on the pressure drop between the supply pressure inside the reverser and the
local air pressure in the clearance. This velocity can be expressed by using the Bernoulli's
equation across a hole. However, frictional losses at the exit of the hole need to be
considered. This is done by using a discharge coe.cient, 04i41. Thus, the equation
representing the air velocity through the holes becomes

;"i;
0
(1!p/p

0
)1@2, (40)

where;
0
"J2p

0
/o. The e!ect of the momentum of the incoming air near the holes is only

approximately included by this method. However, the overall momentum balance should
be preserved if the correct value of i can be found. Experiments show that for the reversers
of interest, i varies between 0)65 and 0)9 (MuK ftuK et al. 1998b).

On the outer periphery of the web-reverser clearance, the air velocity is substantially high.
Therefore, the following exit boundary condition for the air pressure is prescribed:

p"P
a
!1

2
oi

b
(u*2#v*2) (41)

on the outer boundary, where i
b
is a discharge coe$cient for the exit #ow at the boundary

and P
a
"0 is the ambient pressure. A value of i

b
"1 was used in this paper. No exit

conditions for the #ow are necessary.

4. NUMERICAL SOLUTION

4.1. SOLUTION OF THE SHELL EQUATIONS

The radial equilibrium equation (15) (called the w-equation heretofore) and the stress
function equation (18) (/-equation) are coupled through the radial de#ections w and the
stress resultants (16). In this work, a staggered solution is used, where the w- and /-
equations are solved separately in an iteration loop. Thus, the nonlinear coupling due to the
right-hand side of equation (18) is avoided and the array storage requirement of the fully
coupled w}/ solution is reduced by one half.

The governing equations and the boundary conditions are discretized using second-order
accurate, central "nite-di!erence formulas, using M

s
nodes in the x- and N

s
nodes in the

y-direction. The discretization transforms the (x, y) plane to the (i, j) mesh, where a node of
the mesh is identi"ed by its node number k, (k"(i!1)N

s
#j : i3[1, M

s
] and j3[1, N

s
]).

A uniform mesh spacing is enforced. A similar discretization for the w-equation is described
in detail in MuK ftuK (1994). The w-equation is nonlinear due to w

r
and the #uid}structure

coupling. The linearization of this equation is described below.
The /-equation is represented in the following matrix form, following a similar spatial

discretization:

(K /"(r, (42)
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where (K is a banded matrix, with bandwidth 4N
s
#1, representing the biharmonic

operator, / is the vector of stress function values at the mesh points, and (r is the vector
obtained upon discretization of the right-hand side of equation (18).

4.1.1. Solution of the w-equation

Equation (15) is nonlinear and it is solved iteratively with the Newton's method. This
method starts the solution with an initial guess w(n/0)

k
, where n is the iteration number and

k a node on the solution mesh. The iterations are updated as

w(n`1)
k

"w(n)
k
#*w(n`1)

k
, (43)

where *w(n`1)
k

"w(n`1)
k

!w(n)
k

. In order to obtain the correction term *w(n`1)
k

, the dis-
cretized residual wr

k
is linearized around a known iteration step n using a Taylor series

expansion

wr(n`1)
k

"wr(n)
k
#

NsMs
+
l/1

Rwr
k

Rw
l
K
(n)

*w(n`1)
l

#

NsMs
+
l/1

Rwr
k

Rp
l
K
(n)

*p(n`1)
l

for all k. (44)

The higher-order terms of the expansion are not shown in the above equation. Equation
(44) can be expressed in vectorial form as

wK(n)Dw(n`1)"wr(n)!IDp(n`1), (45)

where wK is the tangent sti!ness matrix, I is the identity matrix, Dp(n`1) is the vector
containing change in air pressure at the current iteration step, and wr(n) is the residual vector
for equation (15). The term IDp(n`1) arises from the #uid}structure coupling. The tangent
sti!ness matrix wK is a function of the web de#ection w(n), and therefore equation (45) is
nonlinear. Two nonlinear terms contribute to the tangent sti!ness matrix. The "rst one is
due to the reference state and is of the form !(D+4w

r
#D

s
w
r
) along the center-line of the

web. The second one is due to the #uid}structure coupling and comes from the Rp/Rw
component of equation (44); this derivative is approximated by

Rp
k

Rw
k

K K
p(n)
k
!p(n~1)

k
w(n)
k
!w(n~1)

k
K. (46)

4.2. SOLUTION OF THE FLUID EQUATIONS

The air pressure under the web is obtained from a simultaneous, numerical solution of
equations (38a}c). Details of this solution are given by MuK ftuK et al. (1997). This method uses
pseudo-compressibility where the continuity equation is modi"ed as

Rph

Rt #oa2A
Rhu*

Rx #

Rhv*

Ry B"oa2a;. (47)

The parameter a, the arti"cial speed of sound, and the pseudo-time, t, serve as relaxation
parameters in this approach. The momentum equations (38b, c) are augmented by oRu*/Rt
and oRv*/Rt on their left-hand sides, respectively. These equations are discretized in space
by a second-order accurate central "nite di!erence scheme, and in time by the
Crank}Nicholson averaging. The uniform space mesh involves M

f
nodes in the x*-

direction and N
f

nodes in the y*-direction. The system of equations is linearized with
Newton's method. Use of centered di!erence formulas introduces aliasing error which is
eliminated by using arti"cial viscosity. The discretized system is represented as

!r(n)!C
e
q(n)"(J(n)!C

i
)Dq(n`1), (48)
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where r(n)"Mpr(n), u*r(n), v*r(n)NT, q(n)"Mu*(n`1), v*(n`1), p(n`1)NT, J(n) is the Jacobian matrix
and the matrices C

e
and C

i
are the arti"cial viscosity operator matrices. The band-width of

the matrix (J(n)!C
i
) is 6N

f
#7. The Jocobian matrix in equation (48) is a function of q(n).

Therefore, the matrix (J(n)!C
i
) is inverted at every iteration step. The successive-over-

relaxation method is used to solve equation (48).

4.3. COUPLED SOLUTION OF THE FLUID AND THE SHELL EQUATIONS

The #uid and the shell equations are solved on di!erent meshes. The #uid mesh and the
solid mesh are not required to have one-to-one correspondence. Nine-point biquadratic
interpolation formulas are used to convey the information between the meshes. The
interpolation formulas are given in Cook et al. (1989, pp. 176}180). The following algorithm
is used to obtain the coupled solution:

(i) set w(0), h(0), /(0), n"1, calculate wr(0); repeat until ¸
2
(wr(n`1))(e¸

2
(wr(0)) or n'Iter-

Lim
8%"

;
(ii) interpolate from shell mesh to #uid mesh;
(iii) n

a
"1; repeat until ¸

2
(r(na`1))(e or n

a
' IterLim

!*3
;

(iv) solve equation (48);
(v) q(na`1)"q(na)#Dq(na`1);
(vi) calculate ¸

2
(r(na`1));

(vii) set n
a
"n

a
#1;

(viii) interpolate from #uid mesh to shell mesh;
(ix) calculate wK(n) and wr;
(x) solve the w-equation (45);
(xi) w(n`1)"w(n)#Dw(n`1);
(xii) solve the /-equation (42);
(xiii) calculate ¸

2
(wr(n`1));

(xiv) set n"n#1.

5. RESULTS

In this section, the steady-state solutions of three generic cases are presented. The geometry
and the hole distribution of these cases are given in Tables 3 and 4. In Cases 1 and 3, the
reverser has holes only on the left and right sides of the reverser, and no holes exist on the
lateral edges of the middle section. The hole densities are a"0)025 and 0)05 for these cases. On
the other hand, in Case 2, the hole density a"0)025 is distributed uniformly around the outer
periphery of the reverser area. Using this reverser, a 200 lm thick, 1)016 m wide and 1)016 m
long web is modeled under various operating conditions. In particular, the e!ects of initial
web-reverser clearance h(0), supply pressure p

0
, and hole density distribution a are considered.

5.1. THE STEADY-STATE EQUILIBRIUM

The steady-state web de#ections, air pressure and velocity distributions of Cases 1}3 are
shown in Figures 9}11, respectively. These plots represent typical solutions of the coupled
problem. The common parameters of these cases are p

0
"500 Pa and ¹"120 N/m.

These "gures show that maximum air pressure is located along the web center-line,
y"¸

y
/2, and that the air pressure gradually drops toward the edges. On the left and right

edges, air exits the reverser area in a fairly uniform manner. On the periphery, the air
pressure becomes subambient due to the pressure boundary condition (41). In Cases 1 and 3,
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where the lateral edges of the reverser have no holes, there is a large air pressure variation in
the transverse direction and the air-#ow is distinctly two-dimensional. More air leaves the
web-reverser clearance from these edges. In contrast to this situation, in Case 2, where the
lateral edges of the reverser contain pressure holes, the air-#ow from the lateral edges is
more uniform and the air velocity is reduced. In this case, the overall air pressure in the
clearance is higher, partly due to reduced side #ow, and partly due to increased volume of
air injected into the clearance. The e!ect of using side holes on increasing the air pressure in
the web- reverser clearance has been discussed by MuK ftuK et al. (1998a).

The web de#ection w shown in Figures 9}11 is measured with respect to the initial
reference state, w

o
. These "gures show that in the transverse direction, the nonwrapped

region of the web undergoes a relative de#ection at its edges as compared to its middle
region. In contrast, the wrapped region remains relatively #at. This di!erence in de#ection
behavior is due to the additional in-plane sti!ness, D

s
, shown by equation (15), that the web

gains in the wrap- region.

¹he onset of web contact with the reverser

The ultimate goal of using a reverser in the web path is to provide a mechanism for the web
to change its direction without contact. The mechanics of the onset of contact can be
explained by studying the hole-density distributions presented in Cases 1}3. Figure 12
shows the cross sections of the web de#ection and air pressure along the web center-line
(x, ¸

y
/2).

For the hole density of Cases 1 and 2, where a"0)025, the web #oats closer to the
reverser, in the nonwrapped area, compared to Case 3, as shown in Figure 12(a). This is
due to insu$cient air pressure p under the #at region of the web, which is expected to
TABLE 3

The reverser-geometry
parameters

R
c

0)25 m
yN
C

0)115 m
h(0) 0)003 m
(xN

A
, yN

A
) (!0)26,0) m

(xN
E
, yN

E
) (0)26,0) m

TABLE 4

The hole-density distribution of Cases 1}3

Hole density case No. x-range (m) y-range (m) a

1 0)0 } 0)3 0)0 } 1)016 0)025
0)3 } 0)716 0)0 } 1)016 0)0
0)716 } 1)016 0)0 } 1)016 0)025

2 0)0 } 0)3 0)0 } 1)016 0)025
0)3 } 0)716 0)0 } 0)1406 0)025
0)3 } 0)716 0)1406 } 0)8755 0)0
0)3 } 0)716 0)8755 } 1)016 0)025
0)716 } 1)016 0)0 } 1)016 0)025

3 0)0 } 0)3 0)0 } 1)016 0)05
0)3 } 0)716 0)0 } 1)016 0)0
0)716 } 1)016 0)0 } 1)016 0)05



Figure 9. The calculated air pressure p, air-#ow vectors, web de#ection w for hole distribution Case 1, for
p
0
"500 Pa and ¹"120 N/m.
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balance the pull-down pressure ¹/R. The localized de"ciency of p with respect to ¹/R can
be seen in Figure 12(b). Note that there is no contact between the web and the reverser in these
two cases, and the whole system is in equilibrium. However, the lowest web-reverser separation
is h

.*/
K1 mm, at x"0)16 and 0)84 m locations, whereas at the center the separation is

h
.*$

K1)9 mm for Case 1 and h
.*$

K3)7 mm for Case 2. The nonuniform and narrow web-
reverser separation achieved for Cases 1 and 2 makes the web susceptible to contact.

On the other hand, in Case 3, where the hole density under the #at region of the web is
increased to a"0)05, the air pressure becomes higher, as shown in Figure 12(b). Thus, the



Figure 10. The calculated air pressure p, air-#ow vectors, web de#ection w for hole distribution Case 2, for
p
0
"500 Pa and ¹"120 N/m.
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web de#ects away from the reverser surface, as depicted in Figure 12(a), and the susceptibil-
ity to contact is reduced.

5.2. EFFECT OF INITIAL WEB-REVERSER SEPARATION

The iterative method used to solve the governing equations requires an initial guess for the
distribution of the web-reverser clearance h(0). This initial value is depicted schematically in



Figure 11. The calculated air pressure p, air-#ow vectors, web de#ection w for hole distribution Case 3 for
p
0
"500Pa and ¹"120 N/m.
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Figure 7. The e!ect of starting the solution process with di!erent initial clearance values was
tested for h(0)"1, 2 and 3 mm. This test was done for the tension, ¹"120 N/m, and supply
pressure, p

0
"500, 750, 1000, 1250, 1500 Pa. Table 5 gives the web-reverser clearance at the

mid-point of the web, h
.*$

"h (¸
x
/2, ¸

y
/2), as a function of h(0) and p

o
. This table shows that

starting the model at di!erent h(0) values results in the same h
.*$

values. Thus, it is
concluded that the steady-state solution of the problem is independent of the initial guess of
the web- reverser clearance.



Figure 12. Cross-section of the results for hole density Cases 1}3, at y"¸
y
/2. (a) The web de#ection w with

respect to the initial reference state w
o
. (b) The air pressure p and pull-down pressure ¹/R.
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5.3. EFFECT OF WEB TENSION AND SUPPLY PRESSURE

In order to investigate the e!ect of the supply pressure p
0

on the steady state of the
web-reverser clearance, p

0
was varied between 500 and 700 Pa with 20 Pa increments. The

results are given in Figure 13. The mid-cross sections of the web-reverser clearance
h(x, ¸

y
/2) and the air pressure p (x, ¸

y
/2) are plotted for di!erent p

0
values in Figure 13(a).

The mid-point and minimum web-reverser clearance values h and h , and the total

.*$ .*/



Figure 13. (a) The web de#ection w and air pressure p, along the web center-line y " ¸
y
/2, as a function supply

pressure p
0
, with 20 Pa increments. (b) The mid-point and minimum web-reverser clearance h

.*$
and h

.*/
, and the

total kinetic energy of air, as a function of the nondimensionalized supply pressure p
0
R/¹. Both "gures represent

Case 1 with ¹"120 N/m, R"0)25 m.
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kinetic energy in the clearance, KE
505
":

A
1
2
oDvD2 dA, where v is the air velocity vector, and

A the surface area of the web, are plotted in Figure 13(b).
Figure 13(a) shows that the air-pressure distribution remains nearly constant, at a value

close to the pull-down pressure, even though more air is injected into the clearance at higher
supply pressures. On the other hand, the web-reverser clearance h increases considerably at
higher p

0
values. This clearance increase, in fact, prevents more pressure built- up to occur.

Based on these results, it is concluded that the pull-down pressure has the maximum



TABLE 5

The steady-state values of the mid-point web-reverser
clearance h

.*$
obtained with three di!erent initial

clearance values h(0) for a of Case 1

Supply pressure, p
o

h
.*$

"h(¸
x
/2, ¸

y
/2) (cm)

(Pa)
For h(0)"1 mm For h(0)"2 mm For h(0)"3 mm

500 1)9416 1)9416 1)9417
750 4)4584 4)4584 4)4584

1000 5)4818 5)4818 5)4818
1250 6)2496 6)2496 6)2496
1500 6)9409 6)9409 6)9409
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in#uence on the steady-state equilibrium of the system. Figure 13(b) shows that the excess
energy of incoming air, at higher supply pressures, is spent on increasing the overall velocity
in the clearance.

6. SUMMARY AND CONCLUSIONS

A relatively simple mathematical model for the steady-state #uid}structure interaction
between a web and the air-cushion generated by an air-reverser is presented. The web is
modeled as a thin, #exible cylindrical shell whose strain-free reference state is self-adjusting
according to the interaction between the air-cushion and pull-down pressures. The air#ow
in the web-reverser clearance is modeled by a two-dimensional, averaged form of the
momentum and mass balance equations with nonlinear source terms. The coupled system
equations are solved numerically. It is shown that, at steady state, the air-cushion pressure
in the clearance is nearly equal to the pull-down pressure. The equilibrium is established so
that increasing the supply pressure causes the web to de#ect away from the reverser surface,
thus creating a wider web-reverser separation and keeping the average clearance air
pressure nearly constant. While the web may be in overall equilibrium with the air-cushion
pressure, near the entry and exit sides of the reverser, the air pressure may not be su$cient
to counteract the pull-down pressure. When this occurs the web #oats closer to the reverser,
and in these areas contact may occur. Increasing the hole density in the entry and exit sides
helps enough air pressure to be generated to counteract the pull-down pressure.
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APPENDIX: NOMENCLATURE

C in-plane sti!ness, Ec/(1!l2)
C@ C(1!l)/2
D bending sti!ness, Ec3/12(1!l2)
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D
s

shell sti!ness
D@ D(1!l)
E Young's modulus
H Heaviside step function
¸ typical web length
¸
1
, ¸

2
tangency points of a membrane

¸
x
, ¸

y
total length and width of the web

M
x
, M

y
, M

xy
bending moment resultants of the web

N
x
, N

y
, N

xy
in-plane stress resultants of the web

N@
x
, N{

y
, N{

xy
in-plane stress resultants of the web at steady state

Q
x
, Q

y
normal shear force resultants of the web

P
a

ambient air pressure
R

o
radius variation at the initial reference state

R
c

radius of the air reverser
R, R(x) radius, radius of the web
Re Reynolds number, o;h/k
Re* modi"ed Reynolds number, o;h2/¸k
¹ external tension
; air velocity at the exit of an air hole
< typical air velocity
c web thickness
h web-reverser clearance
h(0) initial web-reverser clearance
u*, v*, w* air velocity components
u, v, w web de#ection components
x*, y*, z* coordinates for #uid mechanics
x, y, z coordinates for web mechanics
w web de#ection with respect to w

0
w
0

initial reference state of the web
w
r

self-adjusting reference state of the web
wN w!w

r
p air pressure
s longitudinal coordinate for the beam-solution
t pseudo-time used by the arti"cial compressibility method
a air hole distribution density
e
x
, e

y
, e

xy
in-plane strains in the web

e
t

distance along the unwrapped web where curvature becomes 0)01/R
ci

x
, i

y
, i

xy
curvatures of the deformed web

i discharge coe$cient at the hole exit
i
b

discharge coe$cient at the outer periphery of the web
j (¹/D) 1@2

k viscosity of air
l Poisson's ratio
/ the Airy stress function
t angle between the web tangent and the xN axis in Figure 5(b)
o density of air
q
z*x*, q

z*y* shear stress components between air and walls
h* peel-o! angle
+4 the biharmonic operator

<ector and matrix Operators

C
e

explicit arti"cal viscosity operator matrix
C

i
implicit arti"cal viscosity operator matrix

Dp #uid pressure di!erence between iterations
Dq correction vector of #uid unknowns
Dw correction vector for the w equation
/ vector of / values on the mesh
I identity matrix
J Jacobian matrix of the #uid equation
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(K sti!ness matrix of the / equation
wK sti!ness matrix of the w equation
q vector of #uid unknowns
(r residual of the / equation
r residual of the #uid equation
wr residual of the w equation
pr, u*r, v*r residual vectors for equations (38a}c)
u*, v*, p vectors of #uid velocity and pressure
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